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SECTION 1

INTRODUCTION

The California Air Resources Board (ARB) and the U.S. Environmental
Protection Agency (EPA) both seek to identify new and innovative methods to
control toxic air pollutants. One potentially viable concept is the use of
polymeric membrane materials which allows the selective permeation of organic
vapors. However, further development and testing will be required before this

technology can be considered as a proven near-term solution.
OVERVIEW OF THE TECHNOLOGY

Membrane systems have been used for several years as a concentrating step
for various operations such as water treatment, hydrogen separation, and CO,
recovery. A polymeric membrane system for organic vapor recovery-typically
consists of an ultra-thin layer of a selective polymer which is supported on a
porous sublayer (see Figure 1-1). The open support material is used as a

spacer to separate the polymer layers in a spiral-wound membrane module.

An innovative use of a membrane may be for concentrating hydrocarbon
vapors from exhaust gases such as solvent oven drying exhaust. A “precon-
centrator” membrane could be used to reduce the size and, in turn, the capital
and operating requirements of a conventional VOC control device such as a
carbon adsorber or incinerator. The overall result would be a cost savings, a
performance improvement (i.e., greater emissions reductions), and, for

incinerators, reduced energy requirements.

The purpose of this work is to evaluate the applicability of membrane
systems as a preconcentrator and to define operating parameters of a membrane
system. The advantages of such a system are a potential reduction in cost for

the overall system both from a capital and operating cost standpoint and a
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potential increase in the number of applications that could use those conven-

tional controls, both technically and economically.

In order to achieve the objectives, several tasks were performed. First,
a bench-scale membrane module was tested with six common solvents to define
the capability of membrane technology to solve toxic air emission problems and
to define operating parameters. Next, the bench-scale data was used to
develop preliminary conceptual system designs. With these designs, cost
estimates were prepared for both capital and operating costs of the membrane
assisted systems, and these costs were compared to the costs for systems which

did not utilize the membrane preconcentrator step.

As a prelude to the experimental work, a review of available literature
on hydrocarbon vapor recovery with membrares was performed. Any relevant

articles found in the search are discussed below.

LITERATURE REVIEW

In order to obtain any additional information on membranes, specifically
gas-phase hydrocarbon recovery, a computerized literature search was per-
formed. Unfortunately, very little new data were found. Out of three major
databases (National Technical Information Service (NTIS), Chemical Abstracts
(CA), and Engineering Index (COMPENDEX)), only seven entries were located,
three of which were not applicable. The conclusion is that membrane applica-

tions in the VOC recovery area are rare.

Theoretical studies have been presented for polymeric membrane systems.
The fundamental material and energy balance equations governing the design and
performance of single-stage gas permeation were presented by Weller and
Steiner (1). A further analysis for the cross-flow pattern (which applies to
the spiral-wound module used in this study) was performed by Pan and Habgood
(2). The theoretical model in Section 4 used for comparison with the experi-

mental data is based entirely on the equations found in Pan and Habgood.



Much of the data on gas-phase hydrocarbon recovery using polymeric
membranes have been presented by Membrane Technology and Research, Inc. (MTR).
The effort at MIR has been led by R.W. Baker, and has resulted in several
papers (3,4), reports (5,6), and at least one patent (7). MIR is actively
marketing a membrane system for solvent vapor recovery for smaller industrial

applications such as web drier emissions.

A recent paper (8) dealt with synthetic membranes for separation of
organic vapors from waste air streams. The authors discuss their tests of
hollow fiber membranes using polydimethylsiloxane as the selective barrier.

They propose a process for recovery of toluene from spray painting operations.



SECTION 2

SUMMARY AND CONCLUSIONS

SUMMARY

A bench-scale polymeric membrane system was designed and constructed for
this program. The membrane was spiral-wound and was supplied by a current
membrane manufacturer. The membrane test module performed well in removing a
large percentage of solvent from dilute (20 to 2000 ppmv) gas streams. The
membrane was able to remove about 60 percent of the incoming solvent, and
generated a ”“permeate” stream about three (3) times as concentrated as the
original feed. The module was equally effective on all six of the solvents
tested. No noticeable degradation in performance of the module was apparent
after the test sequence, although an extended performance evaluation was not

conducted.

Based on the test data and available cost data for two simple configura-
tions, the membrane preconcentrator does not appear to be an economic alterna-
tive to carbon adsorption for low concentration (i.e., 100 to 1000 ppmv)
solvent-laden air streams. The capital and annualized costs of the membrane-
augmented system were consistently higher than the carbon adsorber alone.

Cost reductions for the membrane-augmented carbon adsorber (due to the reduced
volume flow) were not sufficient to cover the added expense of the membrane

and associated equipment.

Additionally, the study examined the use of a pressurized feed versus a
vacuum permeate stream. For equivalent inlet gas flows, the vacuum-pumped
arrangement was more expensive than the compressed feed arrangement. This was
surprising since it seems wasteful to compress‘the full feed flow rather than
the smaller permeate flow. Nevertheless, the compressed feed arrangement
requires less membrane area, and avoids potential problems with humidification

of the permeate when using a liquid ring vacuum pump.



CONCLUSIONS

The test program was able to provide reproducible data regarding the
performance of the bench-scale membrane module. The sampling and analytical
methods worked well, and the data could be correlated to an existing model.

The program was able to characterize the operation of membrane module.

The conceptual design phase of this project provided an opportunity to
study the material balance equations developed by Weller and Steiner (2) for
cross-flow (spiral-wound) membranes. The material balance model was able to
accurately approximate the experimental performance data for stage cut and
enrichment ratio. Discussions with carbon adsorber vendors brought out
additional design considerations, especially regarding the upper limit for
enrichment (25 percent of the lower explosive limit for flammable solvents),
and the potential problems of saturating the permeate stream with water vapor

when a water-sealed liquid ring vacuum pump is used.

The cost algorithm showed the membrane-augmented system to be more costly
than direct carbon adsorption in all of the cases studied. The cost estimat-
ing section showed that capital costs of carbon adsorbers do not change much
at flow rates below 28.3 Nm®/min (1000 scfm). For small adsorber systems,
component costs vary slightly, and materials and fabrication costs are nearly
the same. Furthermore, the benefit of increased inlet concentration to the
adsorber (i.e., reduced volume flow) is not great, since the amount of carbon
in the bed (and the amount of steam required) is dependent on the amount of
solvent to be handled. Further work will be required to estimate the impact
of membrane enrichment on improved working capacity, which might allow

additional reductions in cost for the membrane-augmented system.



SECTION 3

EXPERIMENTAL TESTING

TEST OBJECTIVES

The purpose of the bench-scale testing was to obtain experimental data on
the performance of a small spiral-wound membrane module used to concentrate
solvent vapors. In past reports by others, much of the experimental data were
obtained using very small permeation cells containing a flat membrane disc of
only a few square centimeters in area. Extrapolation of experimental data
from such a small membrane is highly uncertain. Instead, this study has used
a small spiral-wound membrane module to obtain data which may be scaled up
with more confidence. The approximate membrane area of the test module is

0.4 m® (4.3 ft?). Other information about the membrane module is presented in
Table 3-1.

The membrane performance is indicated by two properties: i) the removal
efficiency, or in other words, the percentage of solvent entering which is
transferred to the permeate stream (related to the solvent flux across the
membrane); and 2) the separation factor, which is the degree of concentration
or enrichment which the membrane can achieve (related to the selectivity of
the membrane). Both of these properties are dependent on the operating
conditions. For example, the pressure ratio (permeate-side pressure/inlet

pressure) can exert a strong influence on removal efficiency and enrichment.

The experimental tests were conducted on six solvents (listed in Table
3-2). Each of the tested solvents finds wide use in commercial and industrial
applications and is meant to represent certain classes of organics. Also, the
solvent vapor feed concentration was varied for each of the solvents, gener-
ally within the range of 20 to 2,000 parts per million volume (ppmv). This
low concentration range was chosen since data in this range has not been

available in the literature. Alsc, it is the range where the membrane system



TABLE 3-1. MEMBRANE MODULE DATA

Manufacturer:

Module Type:
Configuration:
Membrane Material:
Membrane Area:
Membrane Thickness:

Module Dimensions:

Normal Operating

Conditions:

Nitto Electric Industrial Co., Ltd.

Shiga Plant, Membrane Division

Kusatsu, Shiga, Japan

S2B Organic Vapor Recovery Module

Spiral Wound

Composite Polyimide

0.4 m? (4.3 fc?)

3um (.0012 in)

(External Housing) 7.9 cm diameter x 62.0 cm length
(Internal Element) 6.1 cm diameter x 53.3 cm length
Inlet Flow: 50 SLPM (2.0 scfm)

Inlet Pressure: 800 mmHg (15.5 psia)

Permeate Flow: 3 SLPM (0.106 scfm)

Permeate Pressure: 80 mmHg (1.55 psia)
Temperature: 25°C (77°F)




TABLE 3-2.

SOLVENTS TESTED IN THE STUDY

Solvent Class Industrial Application

Hexane Aliphatice Surface coating
Vegetable extraction

Toluene Aromatic Surface coating
Printing

MEK*® Ketone Surface coating
Printing

Methanol Alcohol Printing

. Degreasing
Freon 113P Chlorofluorocarbon Electronic degreasing

Methylene Chloride

Chlorinated

Dry cleaning

Metal degreasing
Foam blowing

*Methyl ethyl ketone

®1.1,2-Trichloro-1,2,2-trifluoroethane



may be applied as a preconcentrator in conjunction with other VOC control
technologies which work best on high solvent concentration streams. Test
conditions that were measured and kept constant included: 1) inlet tempera-
ture, pressure, and flowrate; 2) outlet pressure and flowrate; and 3) permeate
pressure. The module was tested with solvent vapor in nitrogen gas. This
reduced the potential hazards associated with several of the flammable

solvents and also provided data comparable to previous studies in nitrogen.

The flammability of certain solvents could pose an additional hazard to
the testing or practical application of membrane systems for solvent recovery.
Flammable solvents and oxygen can form explosive mixtures. A membrane
preconcentrator handling (flammable) solvent vapors in air could result in
sh%fting the mixture from a dilute feed condition below the lower explosive

limit (LEL) to a concentrated permeate mixture within the explosive range.

TEST PROCEDURES

Figure 3-1 illustrates the experimental apparatus. The membrane module
was installed in a closed-loop arrangement for testing. The closed-loop
arrangement was chosen to minimize the amount of nitrogen which would other-
wise be wasted if the system vented to the atmosphere. The stripped off-gas
or residue was recycled back to the inlet and a small volume of make-up
solvent vapor was fed to the loop. Because of the small (but finite) amount
of nitrogen which passed through the membrane with the solvent, make-up

nitrogen from a cylinder was required.

The primary measurements were the total hydrocarbon (THC) concentrations
taken at the membrane feed inlet and stripped off-gas outlet. These concen-
trations were measured with the Byron 401 THC analyzer, with samples taken
semi-continuously at one-minute intervals. Since the project utilized only

one analyzer, it was necessary to sample the inlet and outlet locations

alternately.

In order to close a material balance around the system, it was necessary

to measure the amount of solvent transferred to the permeate stream. During

10
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the course of the project, tests showed that the cold trap sampling technique
was not sufficiently accurate to determine the permeate solvent flux. As
explained later, a method was developed to extract a sample from the permeate
stream for direct THC analysis. This required a special arrangement of
additional sample pumps (operated in series) to pull samples from the low

pressure permeate side (see Figure 3-1).

Starting a test series on a new solvent first invelved filling the
previously-cleaned saturator with Reagent Grade solvent and closing the top.
A Teflon® gasket sealed the flanged comnection. The saturator used a dip tube
to bubble nitrogen through the solvent. The saturator also contained 1/2”
glass Raschig rings (packing) to ensure adequate gas-liquid contacting. The
temperature of the liquid solvent was measured with a thermocouple. The
saturator was wrapped with a heating tape (and insulation) to allow the
solvent to be heated. The saturator was pressurized to a known pressure. By
varying the solvent temperature and saturator pressure, it was possible to

adjust the concentration of the saturated solvent vapor.

Next, the membrane system was started with nitrogen only to establish a
steady-state flow and total hydrocarbon background before adding saturated
solvent vapor to ensure the removal of traces of solvent from previous tests.
A low baseline level of solvent was determined by sampling the inlet THC
concentration with the Byron 401. The circulating pump and vacuum pump were
started before beginning the flow of saturated solvent vapor into the cir-
culating loop. Normally, the cold trap was filled with liquid nitrogen, and
the vacuum was adjusted as the circulating pump was started. After establish-
ing a low baseline for inlet THC, the flow of saturated solvent vapor could be
started. The solvent concentration in the circulating loop was governed

mostly by the flowrate of the solvent vapor.

Once the inlet THC concentration had stabilized, data collection was
started. Sampling the inlet and outlet THC (and later, permeate THC) streams
involved switching back and forth, since only one THC analyzer was used.
Confidence in the data was highest when the respective THC values remained

essentially constant between sampling periods. Whenever possible, the THC

12



sampling sequence was from low to high concentration. This helped to minimize
delays and potential erroneous THC responses caused by solvent adsorption on
the Teflon sample lines. Therefore, sample lines were changed when switching
from the permeate (highest concentration) to the outlet (lowest concentra-
tion). If contaminéted, the sample line could be cleared in a short time by

allowing UHP N, to flow through it.

Overall, including the daily multipoint calibration of the THC analyzer,
it was possible to complete tests at two levels of inlet solvent concentration
each day. This is based on the time required to change solvents, purge the

membrane, and collect about two hours of data at each condition.

QA/QC Procedures

Several types of procedures were developed to provide quality assurance
(QA) and quality control (QC). These QA/QC procedures were detailed in the
Test Plan/Quality Assurance Project Plan (QAPP). A brief list of these
procedures is summarized in Table 3-3. The QAPP was written to ensure that
the experimental measurements would provide results of sufficient quality to
evaluate the performance of the control technology. The QAPP discussed Data
Quality Objectives (DQOs), Data Quality Indicators (DQIs), sampling and
analytical procedures, data reduction methods, data validation methods, and
reporting procedures. The statistical analysis of the test data is presented
in the Quality Control Evaluation Report (QCER), in Appendix E of this report.
The detailed results of the calibrations and other QC checks are presented in

Appendix B.

13
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SECTION 4

TEST RESULTS

EXPERIMENTAL DATA

Experimental data were recorded in a laboratory notebook and on a strip
chart recorder connected to the Byron 401 THC analyzer. At the conclusion of
the experimental testing, the laboratory notebook data were entered into a
PARADOX relational database for further data manipulation. Appendix A
contains a tabulated listing of process data taken (approximately) every five
minutes. Also included in Appendix A are sample calculations which illustrate
how the process data were converted to the intermediate results of solvent
mass flow. Appendix E contains the statistical analysis of the results,
including estimates of experimental error. Table 4-1 presents a summary of
the average inlet, outlet, and permeate concentrations for each test., Also
listed are average inlet and outlet solvent mass flowrates and the average
pressure ratio of each test. For the test rums where the gravimetric trap was
used, the trap results were not used, and the remaining calculations for those
runs were based on an assumption of 100% closure of the material balance (a

more detailed discussion is provided in a subsequent section).
REMOVAL EFFICIENCY

Removal efficiency refers to the percentage of incoming solvent vapor
which is removed by the membrane. For example, consider a source of solvent-
laden exhaust air containing 100 kg/hr of solvent. If a membrane having a
removal efficiency of 75% were to be applied to this air stream, then the
membrane would produce a stripped off-gas containing only 25 kg/hr of solvent.
The balance (75 kg/hr) would be contained in the more concentrated permeate

stream.

15



The removal efficiency of the membrane module was calculated by the
following equation:

. (4-1)
{Inlet Solvent Flow - Outlet Solvent Flow)x100%

Removal Efficiency = Inlet Solvent Flow

The numerator (Inlet - Outlet) is equal to the solvent flux through the

membrane. Results of removal efficiency for each test are shown in Table 4-1.

ENRICHMENT RATIO

Enrichment ratio refers to the degree of enrichment that the membrane
can accomplish at given conditions. For example, consider a source of
solvent-laden exhaust air with an initial concentration of 1000 ppmv. If a
membrane having an enrichment ratio of five were applied to this air stream,

then the membrane would produce a permeate stream enriched to 5000 ppmv.

The enrichment ratio is simply the ratio of the permeate concentration
to the inlet (feed) concentration. Table 4-1 presents the average enrichment

ratio for each test.
SEPARATION FACTOR

Separation factor refers to the relative permeabilities of the solvent
and the gas (e.g., nitrogen or air) through the membrane. If the separation
factor were equal to one, then the permeabilities would be equal and no
separation could be obtained. From the standpoint of trying to optimize a
membrane for high removal and enrichment of solvent, one would prefer a high
separation factor. However, as will be discussed later, membrane area is not
determined by the relztive permeability, but by the actual permeability of the
solvent through the membrane. Therefore, separation factor is usually a

compromise.

The separation factor (alpha) was calculated by the following equation:

16
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Separation Factor = Permeability of Solvent (4-2)
P Permeability of Nitrogen

where, Permeability = Flux/partial pressure difference;
Flux = Inlet flow per unit time; and
Partial Pressure Difference = Inlet side partial pressure -

permeate side partial pressure.

Table 4-2 presents the average values used to calculate the separation factor
for each run. Solvent permeabilities are functions of the solvent feed
concentration and solvent type (8). Therefore, it is not unexpected that the

separation factors differ between runs.
MATERIAL BALANCE

In order to check the validity of the inlet and outlet solvent flow
measurements, a material balance was performed around the membrane module. A

material balance can be shown mathematically as:
IN - OUT + ACCUMULATION = 0 (Conservation of Mass) (4-3)
or, for steady state conditions with no accumulation:

IN = OUT

or

OUT/IN = 100%

where,
IN = Inlet Solvent Mass Flow (g/hr)
OUT = Permeate + OQutlet Solvent Mass Flow (g/hr)

The material balance used an independent measurement of permeate
concentration (or permeate flux) for comparison with the solvent flux used in
the calculation for removal efficiency. The following discussion concerns the

results of two different sampling techniques which were used to obtain this

data.
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Gravimetric Trap

The original approach to determine the permeate solvent flux was to use
a pre-weighed cold trap to condense the permeate solvent vapor over a known
time period. The difference between the post-test weight and the tare weight
would yield the amount of solvent collected. This technique was tested prior
to conducting the actual experiments (Appendix B), and was used during the
test runs before the apparatus was modified for direct permeate sampling.
Unfortunately, the QA/QC tests showed that the recovery of the cold trap was
lower than expected. As a result, the isopentane/liquid nitrogen bath was
changed to liquid nitrogen in an attempt to improve sample recoveries by
maintaining the trap at an even lower temperature. However, as seen in
Table 4-3, the closures with the gravimetric trap were consistently low. We
speculate that the cause is incomplete solvent trapping caused by poor heat

transfer in the trap and a short residence time.

Direct Permeate THC Sampling

An alternative approach to obtaining an independent value for the
permeate flux involved pulling a sample from the permeate stream and analyzing
it with the THC analyzer. This required using a two-stage Thomas pump and a
separate diaphragm pump to obtain the necessary vacuum. This technique was
also tested prior to collecting experimental data; the results are presented
in Appendix B. As Table 4-4 indicates, material balance closures obtained

with this sampling method are much closer to 100%.

COMPARISON WITH THEORETICAL MODEL

When prior experience with full-scale systems is lacking, many engineer-
ing studies use pilot-scale or bench-scale results to assist in the design of
full-scale units. The accepted basis for "scale up" estimates is the use of
dimensionless groups which are derived from the application of the laws of

conservation of mass, momentum, and energy.
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The analysis of a single-stage gaseous permeation process was performed
by Pan and Habgood (2). They expanded on previous work by Weller and Steiner
(1). Among the simplifying assumptions are: permeabilities of both com-
ponents are constant; negligible pressure drop across feed and permeate flow
paths; and, negligible mass transfer resistances other than the permeation
process itself. As mentioned earlier, the assumption of constant permeability
is not strongly supported by the experimental data, nor by other researchers
(8). However, examination of the results in Table 4-2 shows that the error
introduced by this approximation is not excessive in most cases. The test

procedures were not sophisticated enough to provide data to check the other

assumptions.

The spiral-wound membrane module used in this study follows the cross-
flow pattern. It has been shown that as the feed concentration approaches
zero, the equations used to describe membrane performance simplify consider-

ably (2). The equations are shown below:

el - (x/np @7/ @)1

(4-4)
y/xe = [1 - (x/xg) &/ (L) e*-1) 0 ("enrichment ratio") (4-5)
R® = F/(1-7) (4-6)

where, F = fraction of feed permeated in cross-flow pattern ("stage cut");

Xs = mole fraction of solvent in feed gas;

X = mole fraction of solvent in residue (off-gas); and

a* = Qg/Qy, = permeability of solvent/permeability of nitrogen
("selectivity").

ml(STP) ¢« cm

cm « sec mmHg

Q. = Permeability of solvent

v = p/P, permeate/feed pressure ratio

Y = mole fraction of solvent in permeate side stream (average permeate
concentration in cross-flow pattern)

Rf = (Qy2/4)PS/Ly = dimensionless membrane area with references at

feed inlet end
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d = membrane thickness, ft
P = feed side pressure, psia
S = membrane area, ft?

Ly = inlet feed flowrate, lbemol/hr

These equations are valid for finite 1/x¢ provided that 1/x, is greater than

both a* and 1/(y). Both of these inequalities are valid for these experi-

ments,

Stage cut (F) represents the fraction of feed gas which passes through
the membrane into the permeate. While this definition sounds similar to
removal efficiency, it is different. Recall that removal efficiency referred
only to the percentages of solvent which was removed, while stage cut refers
to the fraction of total feed gas removed (i.e., solvent and nitrogen).

Therefore, removal efficiency and stage cut, while similar, are nonetheless

different quantities.

As shown in Table 4-5, experimental enrichment ratios show good agree-
ment with the calculated values. Also, comparison of calculated stage cuts

(F) with experimental stage cuts showed good agreement.

Thus, we conclude that the good agreement of both experimental enrich-
ment ratios and stage cuts with the model indicates a) the material balance
results are accurate, and b) there is justification in using the model to

confidently extrapolate membrane designs.
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SECTION 5

CONCEPTUAL DESIGNS OF MEMBRANE PRECONGENTRATOR

PROCESS DESCRIPTION

The membrane module is one component in a organic vapor recovery system
that includes several other elements. A simplified overall diagram of a
membrane system for solvent vapor recovery is shown in Figure 5-1. Organic
solvent vapors generated by the source (such as a solvent degreaser machine or
a drying oven) are transported to the control system using ductwork and a
blower. The ductwork may collect vapors from just one source or from several
sources located nearby. The collected vapors are sent to the membrane module.
Inside the membrane module, the feed gas is separated into two streams: a
concentrated solvent vapor stream ("permeate") and a depleted residue gas
stream ("stripped off-gas"). On the permeate side, a vacuum pump pulls a
vacuum. An alternate approach is to compress the feed gas with a compressor
upstream of the membrane. In either case, an imposed pressure difference
across the membrane is the driving force for separation. Most of the organic
vapor is drawn through the membrane into the permeate, along with a small
amount of air. The stripped off-gas from the membrane is either recycled back
to the original vapor source, or may be discharged directly to the atmosphere
in some cases. Several options are available for further treatment of the

permeate. Possible treatment technologies include:

° Direct condensation (using chilled water/refrigeration; allows
solvent recovery, but is viable only at higher solvent concentra-

tions);
. Incineration (with direct flame; this destruction process is usually

best for contaminated solvents which are inexpensive to replace

[e.g., hydrocarbons] that also have high Btu content); or
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. Carbon adsorption (in regenerative mode; steam stripping followed by

condensation and decanting allows recovery of solvent).

Each of these final control technologies is discussed in more detail in
following sections, although the primary focus of the report is on the concept

of a membrane preconcentrator in conjunction with carbon adsorption.
SCALE UP

As was explained in Section 4 under "Comparison with Theoretical Model,"
a material balance model for the single-stage gaseous permeation process was
developed by Pan and Habgood (2). 1In addition to using this model to compare
with the laboratory test data, it was also possible to use the model to scale
up the test data in order to extrapolate the membrane sizing and performance
characteristics for full-scale systems. An example design calculation is
presented in Appendix D. Complete design calculations for all cases are

listed in Appendix F. The simplifying assumptions are:

. The feed concentration is low (approaching zero), so the simplified

version of the equations is wvalid; and

. An average permeability based on the laboratory test module is a
valid approximation of the actual permeability for the full-scale

system.

The first assumption was checked by comparing (1/xg) > (a* and 1/4). The
second assumption is not easily checked without a performance test on a larger
system. Permeability is a function of the diffusivity (e.g., diffusion
coefficient, D) and the solubility (e.g., distribution coefficient, k) for a
particular solvent in a given polymer membrane. The laboratory test data was
obtained using the membrane material at conditions similar to those which
would be employed in full-scale systems. This fact should compensate for the

realization that both coefficients D and k increase drastically with an
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increase in the initial partial pressure of the solvent. Therefore, it is

felt that both assumptions should hold for scale up.

The scale up exercise consisted of designing a multitude of systems at
varying flowrates, inlet concentrations, membrane removal efficiencies,
membrane selectivities, and for both vacuum pump and compressor based single
stage membrane configurations. A complete matrix of design calculations is

shown in Table 5-1.

The rationale for the selection of the various parameters is explained

below:

1. Inlet flowrates of solvent laden air were varied from 6.2 Nm®/sec
(250 ACFM) to 249 Nm’/sec (10,000 ACFM) to cover a range of applica-

tions that generate airborne solvent emissions;

2, Inlet solvent concentrations of 1000 and 100 ppmv were chosen to
cover both typical operations (e.g., solvent degreasers, drying
ovens) and also other uses which generate more dilute solvent

emissions;

3. Only two solvents (CFC-113 and toluene) were chosen for subsequent
system designs and costing because a) they are typical solvents used
in vapor degreasing and coating lines, respectively, and b) the
permeabilities of these solvents are similar to the other tested
solvents. Therefore, the design and cost comparisons are not

critically dependent on the solvent selected;

4, Membrane removal efficiencies were varied from 60 to 95% to allow
for evaluation of different levels of control. The overall control
efficiency of the membrane preconcentrator with a carbon adsorber

was slightly lower, due to the 95% control of the carbon adsorber;
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TABLE 5-1.

DESIGN MATRIX

Inlet flow, Inlet Membrane
Nm®/sec Conc Removal Membrane
(ACFM) (ppmv) Solvent Efficiencies® Selectivities Configuration®

6.2 (250) 1000 CFC-113 60,85,95 5,20,200 Vacuum Pump,
Compressor
6.2 (250) 100 CFC-113 60,85,95 5,20,200 Vacuum Pump,
Compressor
62.2 (2500) 1000 CFC-113 60,85,95 5,20,200 Vacuum Pump,
Compressor
62.2 (2500) 100 CFC-113 60,85,95 5,20,200 Vacuum Pump,
Compressor
249 (10000) 1000 Toluene 60,85,95 5,20,200 Vacuum Pump,
Compressor
249 (10000) 100 Toluene 60,85,95 5,20,200 Vacuum Pump,

Compressor

?0Overall Removal Efficiencies include 95% control by final carbon adsorber:
(60%) (95%2)=57% overall efficiency
(835%) (95%)=81% overall efficiency
(95%) (95%)=90% overall efficiency

PConfiguration is the arrangement of a system with a pressurized feed

(i.e., compressor) or a vacuum permeate (i.e., vacuum pump).
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5. Membrane selectivities were varied from 5 to 200 to evaluate the
effect of membrane thickness on overall system costs. The selected
range was chosen to reflect the range of selectivity which has been
reported for solvent/N, separations with current membranes at
typical pressure ratios. Results from the laboratory testing
portion of this study showed selectivity values vary between 6 and 7

for most solvents;

6. Two configurations of the membrane system were designed: first, the
arrangement using a liquid ring vacuum pump operating at a pressure
ratio of 0.10 (Figure 5-2a); second, an alternative arrangement
using a turbocompressor (e.g., centrifugal or screw compressor)
operating at a pressure ratio of 0.20 (Figure 5-2b). Assuming an
initial. feed gas pressure of 776 mmHg (15.0 psia), the selected
pressure ratios for the two alternative configurations would result
in: a suction pressure (at the permeate side) of 78 mmHg (1.5 psia)
for the vacuum pump arrangement; and, compression (on the feed side)

to 5.1 atm (75 psia) for the compressor arrangement.

To avoid further complicating the comparisons, all the designs were

performed on the following common basis:

1. Inlet relative humidity (RH) and temperature were kept at 50% RH at
37.8°C (100°F);

2. Carbon adsorption systems were designed for 95% removal, and all

were regenerative systems; and

3. Adsorption isotherms for CFC-113 and toluene on Calgon BPL® carbon

were used to design the carbon adsorbers.
4, Overall removal efficiencies for the complete membrane system (i.e.,

57 to 90%, including 95Z control by the carbon adsorber) are based

on a once-through design. If the stripped off-gas was recycled back

31



"Residue" (Stripped Off-gas)

*

- =~ | Membrane

‘ _.=" Module
-
“Permeate”
To Vent voe Blower Condenser
: Source
Liquid Ring
Cleaned ,emm——- P
Air (Regeneration) Vacuum Pump

Carbon Adsorbers (On-line)
Steam

Decanter
Reclaimed
Soivent

From Boiler

To Storage

To Wastewater
Treatment

, Figure 5-2a. Membrane System with Vacuum Pump

"Residue” (Stripped Off-gas)

*

_=="| Membrane
T Module
- -~ -
"Permeate”

Compressor

To Vent VOC
Source

Cleaned ,rmmeemecceaaa
Air

!
'l----

’

'

Carbon Adsorbers (On-line)

Steam

Decanter
Reclaimed
Solvent

From Boiler

To Storage

To Wastewater
Treatment

Figure 5-2b. Membrane System with Compressor

32



to the vapor source, the overall removal efficiency would be higher

(approaching 95% control).
INTEGRATION OF OVERALL SYSTEM

This section will discuss several additional factors which may affect the

design, costing, and operation of a membrane preconcentrator.

Alternative Arrangements

Besides the arrangements listed above (i.e., single stage membrane with
compressor or vacuum pump), other configurations have been developed which
offer potential benefits such as greater removal efficiency or higher con-

centration.

First, adding a purge gas into the permeate side of the membrane can
improve the removal efficiency for a given set of conditions by lowering the
solvent partial pressure in the permeate. Dilution of the permeate may be
more than offset by the increase in solvent flux. However, the amount of

purge gas must be carefully calculated to achieve the optimal balance.

Second, it is sometimes desirable to design a multistage membrane system
with a recycle stream when higher permeate concentrations are required. These
arrangements can involve a multiplicity of recycle flow paths and are often
quite complicated. Additional compression or vacuum equipment is usually re-
quired. Justification of the added cost and complexity of a multistage
recycle system must be shown beforehand (14). MTR has studied and promoted

multistage membrane systems as a method to achieve high product recovery.

Third, a membrane configuration known as a “continuous column” has been
suggested. This arrangement is claimed to offer a high degree of concentra-
tion with less membrane area than other configurations. S. T. Hwang (Univer-

sity of Cincinnati) has published several papers on the subject (15,16,17).
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Additional Considerations

There are several other factors which may affect the economics and

operation of a membrane preconcentrator. These are discussed below:

Vacuum versus Compression--Both vacuum-based and compression-based

membrane systems have advantages and disadvantages. Table 5-2 lists the
strengths and weaknesses. At this time, there is insufficient data to

conclude which arrangement is better.

Optimum Arrangement of Vacuum System--Preliminary study of the vacuum
system hardware which would be required for full-scale systems revealed that
several different types of vacuum pumps could be used. Making the correct
selection of vacuum pump could have a major impact on the viability of the
entire system, since it is the mechanical “heart” of the membrane unit, as
well as perhaps the single most expensive component in the system. Listed
below are a few of the types of vacuum pumps which may be applicable for a

membrane preconcentrator:

. Liquid Ring Pump: Has a wide operating range, both for flow and
vacuum level. Only one rotating element, and often uses water as
the sealing liquid. The major drawback may be saturation of the
permeate gas with water vapor, necessitating the use of a chiller to

condense excess water and lower the RH going to the carbon bed.

. Rotary Vane Pump: Limited operating range in flow, so may only be
suitable for smaller membrane systems. Rotary vane pumps (also
known as Sliding Vane Pumps) offer the advantage of a dry source of

vacuum,

. Roots Blower: Wide operating range in flow, but is usually used for
higher vacuum levels than a membrane system demands. The Roots
blower loses efficiency when a high vacuum is not required, but is

also a dry source of vacuum. The Roots blower (also known as a
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Rotary Lobe Blower) is often combined in a ”“compound” arrangement

with a 1liquid ring pump.

Effect of Membrane System on Carbon Adsorber--Concentrating the solvent

in the permeate offers the potential advantage of reduced gas volume sent to
the final control device, in this case, a carbon adsorber. Discussions with
vendors of carbon adsorption systems provided some information which must be

considered before deciding whether a membrane system is worthwhile.

. If the solvent concentration fed to the carbon adsorber is above
10,000 ppmv or above 25% of the lower explosive limit (LEL), carbon
adsorber designers call for dilution air to be added. This would
defeat the purpose of obtaining a concentrated solvent feed.
Therefore, either the inlet concentration should be designed to be
at or below these levels, or the carbon adsorber designer’s approval

must be obtained.

. Water content in the solvent laden air must be considered, espe-
cially when a liquid ring vacuum pump using water as the sealing
liquid is part of the system. As mentioned before, entrained water
droplets from the liquid ring pump are removed, but the exiting gas
is nonetheless saturated with water vapor. Without a chiller to
condense and remove the excess water, the adsorber beds would have
to be sized for additional carbon. The unknown effect of solvent

removal in the chiller condenser would also complicate the design.

Viability of Other Final Control Technologies--As was mentioned earlier

in this section, both direct condensation and incineration are possible
alternatives to carbon adsorption as final control technologies. However,

they are not without their own limitations as well.

For instance, direct condensation using chilled water or other low
temperature refrigerants is a possible alternative. This type of system has
been patented by MTR (7) and discussed in several papers. Commercial systems

are currently in use for recovery of gasoline vapors from bulk storage
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terminals. The best applications for this type of system are those with high
solvent concentrations from the source (i.e., 5-10,000 ppmv and higher).
However, its applicability to dilute solvent vapor streams (i.e., less than
1000 ppmv) would require either highly selective membranes (which would in
turn require larger areas), multiple stages of membranes with recycle (which
would require additional vacuum or compression equipment), or very low

temperatures (with high power requirements).

Likewise, incineration in a direct flame is a possible alternative,
especially if the solvent vapor is flammable, contaminated, has a high Btu
value, and is inexpensive to replace. Combination systems using carbon
adsorption and incineration (such as Calgon Carbon’s CADRE® system) are
commercially available. Disadvantages to incineration for use with a membrane

system include:

Difficulty in handling chlorinated or fluorinated solvents (i.e.,

corrosive products of combustion such as HCl and HF);

. Low concentrations or nonflammable solvents would require supplemen-
tal fuel;
. Unlikely that small incinerators would be easily permitted or

accepted by users; and

. Loss of a recoverable product.
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SECTION 6

COST ALGORITHMS

VENDOR SURVEY AND LITERATURE DATA

Preparation of the cost estimates for the systems previously designed (as
discussed in Section 5) involved first obtaining baseline cost data for all
major capital components. This cost data was obtained through written
Requests for Quotations from equipment vendors, telephone contacts with

equipment vendors, and available literature data.

Requests for Quotes

In order to obtain current cost data for vacuum pumps and carbon adsor-
bers (two of the most expensive elements in the overall system), vendors were
contacted and requested to provide cost quotes for selected equipment. The

following vendors were contacted and sent letters requesting budget cost

quotes:
1. Carbon Adsorbers -
American Ceca Corp. (AMCEC)
RaySolv Inc.
Barnebey and Sutcliffe Corp.
2. Vacuum Pumps -

Nash Engineering Co.
SIHI Pumps, Inc.
Ochsner Pumps
Intervac Corp.

Edwards High Vacuum

38



Leybold Heraeus Vacuum Products
Balzers

Kinney Vacuum Co.

Unfortunately, this approach was generally unsuccessful in providing any cost
data. Typically, the vendor simply declined to quote. Also, some of the
vacuum pump vendors could not supply pumps capable of handling the high

flowrates.

Telephone Contacts

Because of the poor response to written requests for cost data, addition-
al telephone contacts were made to follow-up on the letters or to establish

new contacts with other vendors. The following phone contacts were made to

obtain additional cost data:

1. Carbon Adsorbers -
Mr. Bob Spencer (Allied Signal/Baron Blakeslee)

Mr. Tom Cannon (VIC Manufacturing)

2. Vacuum Pumps -
Mr. Tom Walker (SIHI Pumps, Inc.)
Mr. Mike Whiteside (Telesis High Vacuum for Kinney Vacuum)

Mr. Lou Sleigher (Balzers)

Literature Sources
Available literature data was used for most of the cost estimates. These
estimates were cross-checked with the quoted prices from vendor contacts. The

sources of literature cost data are listed in Table 6-1.

Summary of Cost Data

Because of the diversity of cost data (some from vendor quotes, some from

telephone contacts, and other data from literature sources), this section will

39



TABLE 6-1. LITERATURE GCOST DATA

Membrane Modules -
Development of Synthetic Membranes for Gas and Vapor Separation.

Strathman et al. Pure and Applied Chemistry. Vol. 58, No. 12. 1986
(Ref. 8). '

The Separation of Organic Vapors from Air. Peinemann et al. Journal of

Membrane Science (Ref. 3).

Carbon Adsorbers -
Development of a Carbon Adsorber Cost Algorithm. Report for U.S. EPA/CPB
by Radian Corporation. November 1987 (Ref. 10).

Capital and Operating Costs of Selected Air Pollution Control Systems -
I. R.B. Neveril et al. Journal of the Air Pollution Control Association.

Vol. 28, No. 8. August 1978 (Ref. 11).

The Cost of Controlling Organic Emissions. Kittleman and Akell.

Chemical Engineering Progress. April 1978 (Ref. 12).

Vacuum Pumps -

Chemical Engineering (Dec. 14, 1981) "Selecting Vacuum Systems," by J.L.
Ryans and S. Croll (Ref. 9).

Compressors -

Plant Design and Economics for Chemical Engineers (3rd Ed.). Peters and

Timmerhaus. 1980 (Ref. 13).
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present a discussion of the various cost values and provide a rationale for

the foundation of the cost analysis which follows.

Tables 6-2-A through 6-2-D present a listing of the available cost data
for the four major cost items (i.e., membrane, carbon adsorber, vacuum pump,
and compressor), along with the source of the data. Some cost data may not

list a source if it was requested to be kept confidential.

It is important to note a few points about the capital cost estimates for
carbon adsorbers. First, it was difficult to obtain good cost data for
regenerative carbon adsorbers at the low flowrate range [i.e., less than 28
Nn’/sec (1000 SCFM)]. Only a few data points were available, and it was found
that these small units were nearly as expensive as their larger counterparts.
Discussions with carbon adsorber vendors revealed that although reduced volume
flow can allow slightly smaller components, the fabrication and materials
costs are nearly the same. Likewise, the carbon requirements and operating
costs for both membrane-concentrated permeate vapor and direct untreated flow
from the source were almost equal, since carbon requirements are governed

mostly by the mass of solvent to be adsorbed, an amount that is nearly the

same for both cases (the higher concentration of solvent from the membrane
unit does provide a greater driving force and hence slightly less carbon).
Presumably, at very low flows, a non-regenerative "canister" type of unit

might be more attractive.

RESULTS OF COST ANALYSIS

Capital Cost Comparison

Using the system designs for the CFC-113 and toluene systems outlined
previously in Section 5, capital costs were estimated for complete systems
using a membrane preconcentrator. These costs were also compared to the
capital cost for a carbon adsorber alone handling the same duty. Figures 6-1
through 6-6 present the total installed capital cost for these cases. Table

6-3 provides an example cost comparison showing the effect of the membrane on
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TABLE 6-2-A. LISTING OF CAPITAL COST DATA AND SELECTION OF COST BASIS

MEMBRANE COST DATA

Cost Data Source

A. Membrane Module: $200/m? Nitto Denko (Japan)
Other System Costs: $200/m?

B. Membrane Module: $40/m? Reference 3
Other System Costs: $40 /m?

C. Membrane Module: $150/m? Reference 8
Other System Costs: $188/m?

Cost Basis Selected for This Report:

Membrane Module®: $100/m?
Other System Costs®: $50/m?

®Cost basis for membrane module based on an approximate average of cost data:
(200 + 400 + 150)/3 = $130/m® rounded to $100/m?

PCost basis for other system costs was reduced to $50/m? since cost data from

other sources included either items costed separately in this work (e.g.,
vacuum pump), or not applicable (e.g., condenser-chiller).
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TABLE 6-2-C. LISTING OF CAPITAL COST DATA AND SELECTION OF COST BASIS

VACUUM PUMP COST DATA

_ Capacity
(ACFM @ 27 Driver
in Hg vacuum) HP Installed Cost Source
A. 3,000 200 $99,0002 Vendor G°
B. 600 $55,500% Vendor Df
6,000 $559,0002 "
N 23,400 $1,287,000° "
C. 500 30 $58,000 Ref. 9°:¢
) 5,000 300 $190,000 "
. 21,000 $370,000 n

Cost Basis Selected for This Report:

Design/cost equation in Ref. 9 with escalation factor of 1.232,

*Using installation cost = 150% of purchased equipment cost,

bLiquid ring pump.

‘Rotary (roots) blower.

dUsing design/cost equation in Ref. 9, escalated to lst Qtr. ’'89
(C.E. Plant Cost Index for Pumps and Comprs: 473/384 = 1.232),
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TABLE 6-2-D. LISTING OF CAPITAL COST DATA AND SELECTION OF COST BASIS

COMPRESSOR COST DATA

Capital Cost® (1989 dollars) = 222.8 [(capacity in ft3/min)?-9%3]

Capital Cost® (1989 dollars) = 2272 [(capacity in ft3/min)-18)

Source: Reference 13 (Figures 13-46 and 13-52, respectively), escalated to
lst Qtr. ‘89 (C.E. Plant Cost Index: 351/230 = 1.526).

Cost Basis Selected for This Report:

A. TFor 250 ACFM cases: Used Figures 13-46 from Reference 13 with escalation
factor of 1.526.

B. For 2,500 and 10,000 ACFM cases: Used Figures 13-52 from Reference 13
with escalation factor of 1.526. '

2For helical screw compressors at 150 psi discharge from 130 cfm - 800 cfm.

PFor turboblowers at 30 psi discharge from 1800 cfm - 16,000 cfm.
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capital costs versus direct carbon adsorption. A sample calculation is shown
in Appendix D, and a listing of all cost calculations is presented in Appendix
G.

It is evident from these graphs that the membrane system was more
expensive in all cases. The increased capital cost ranged from roughly twice
(2 times) as costly to over one hundred (100) times as costly, depending on
the cases under consideration. The underlying reason for the higher costs is
that although the membrane unit is able to reduce the volume flow of solvent
vapor to the carbon adsorber, and thereby allow for a smaller carbon adsorber,
this reduction is not sufficient to provide cost savings which cover the added

expense associated with the membrane and vacuum pump or compressor.
Operating (Annual) Cost Comparison

In an analogous fashion to the capital costs described above, the annual
costs were compared for systems with and without a membrane preconcentrator.
In order to compare the costs on a common basis in terms of the amount of
solvent controlled, this section presents an annualized cost effectiveness
result. Table 6-4 presents a listing of the unit costs of various charges for
operating labor, utilities, and interest charges. Figures 6-7 to 6-12 present
the comparisons of annualized cost for the membrane systems versus carbon
adsorption alone. Table 6-5 presents an example cost comparison showing the
effect of the membrane on annualized cost effectiveness. A sample calculation
of annualized costs is shown in Appendix D, and a complete listing of all

annualized cost calculations is presented in Appendix G.

The annualized costs for the membrane augmented system are uniformly
higher than carbon adsorption alone. The membrane system costs ranged from
about twice (2 times) as expensive to over one hundred thirty (130) times as
expensive as straight carbon adsorption for the cases examined. As was seen
earlier in the capital cost comparison, although the membrane system allowed
slightly lower operating costs for the downsized carbon adsorber, the pumping
(or compression) costs, membrane replacement costs and higher capital recovery

costs outweighed these savings.
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SECTION 7

RECOMMENDATIONS FOR FUTURE RESEARCH

Application of membrane technology to separation of solvent vapors from
air streams has not been fully developed on the commercial scale. Other gas-
phase membrane processes have been practiced commercially for many more years.
Examples of these other processes include hydrogen recovery from refinery
process streams, natural gas processing (CO, removal), and air separation. A
few applications of membranes to organic vapor recovery have been marketed.
One example is the recovery of gasoline vapors at gasoline bulk storage
terminals. However, further penetration of membrane technology into recovery
of volatile organic solvents appears to require more testing and improvements.
Specifically, the improvements would be toward higher removal efficiencies at

lower cost.

Testing of Bench-scale Membrane with Carbon Adsorber: Future research

might include studies which combine operational testing of a membrane device
with a carbon adsorber. Although the economic analysis in this work showed
that the membrane approach was uniformly more expensive, further work should
be performed in the low concentration range (i.e., 20 - 100 ppmv). In this
range, carbon adsorbers require larger beds and more frequent regeneration
because the working capacity is lower. That is, the driving force for solvent

adsorption becomes very low with dilute inlet concentrations.

Working capacities are usually estimated by carbon adsorber vendors based
on past experience. The most accurate estimates are obtained by testing full-
scale systems adsorbing the same compound(s). The next-best estimate is
testing of a bench-scale adsorber operating at the same conditions as a
proposed full-scale system. This report relied on a simplified approach used
by carbon adsorber vendors which assumes that working capacity is generally

half of the equilibrium capacity. While this simplified approach takes the
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inlet concentration into account (via the equilibrium capacity), it may

overstate the working capacity when dealing with low inlet concentration.

Therefore, a suggested research effort would be to combine a bench-scale
membrane device with a bench-scale carbon adsorber for clean-up of dilute
solvent streams. This test would be intended to determine if the membrane
provides sufficient enrichment to allow improved working capacity of the
carbon adsorber, resulting in reduced bed area and reduced steam regeneration

demand.

Additional bench-scale testing should be performed with solvent vapors in
air (instead of dry nitrogen only) to determine if the presence of oxygen and
water have any effect on membrane performance. These results would be
important for flammable solvents, since oxygen enrichment in the permeate
could increase the risk of formation of explosive mixtures. The effect of
water vapor is important, too, since humidity in the ambient air will result
in water vapor as a normal constituent in membrane feed gases. The selec-
tivity of a membrane towards water vapor will determine whether the permeate

product is dry or wet.

Improved Membrane Materials: Another area for future research should be

aimed at developing improved membrane materials, especially the active layer.
With the current membrane, a compromise is struck between using a thin
membrane allowing improved flux rates and solvent removal, but at the cost of
poor selectivity and enrichment. This results is lower permeate concentra-
tions and increased gas flow through the vacuum pump and carbon adsorber.
Alternatively, one can specify a highly selective membrane, which will improve
the enrichment. However, this thicker membrane will require a larger area to
achieve the same degree of solvent removal.

Thus, a suggestion for future research would be to focus on testing of
new membrane materials which exhibit both improved solvent permeability (to
increase the solvent flux rate) and improved selectivity (to increase the
enrichment). It is felt that most membrane vendors (e.g., MIR, Grace,

Nitto Denko) are actively working in this area, but their research is proprie-
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tary. University programs in polymer science also are studying membrane

materials.

Alternative Arrangements: A third area for future research would be

developing improved alternative arrangements for membrane devices. The tests
conducted for this work used a simple one-pass arrangement. Other configura-
tions include pressurizing the feed gas (which was economically analyzed, but
not tested), and routing a small amount of residue gas to backflush the

permeate side. Both of these options have potential advantages which should

be tested further.

Furthermore, the hollow fiber design has been touted as superior to
spiral wound modules in terms of packing density and selectivity (Nitto Denko
has indicated they would be willing to supply us with a hollow fiber test
module). Also, the "continuous column" design studied by University of
Cincinnati merits further review. The continuous column is particularly
interesting because the design concept tries to optimize removal efficiency
with pressure ratio. Computer simulations indicate that high removals (95

percent or greater) can be obtained with relative ease with the continuous

column design.

Industrial Application

The application of a membrane system to an industrial VOC emission source
will be highly dependent on the situation. The cost of the system will
probably be more expensive than conventional VOC controls, such as carbon
adsorption or incineration, at least for the situations examined in this
report. If newer, more selective, and high flux rate materials can be devel-

oped, the costs for systems may become more competitive.

Industrial applications that currently seem best suited for this tech-
nology are those that require a high quality recovered product or possibly a
situation where activated carbon may not apply. For example, the recovery of
ketones and aldehydes with activated carbon has resulted in bed fires that

could potentially destroy the recovery system. With the polymeric membrane,
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that problem will not exist; that is, unless activated carbon is used to
recover the permeate vapors. A similar situation exists for 1,1,1-
trichloroethane where activated carbon systems can decompose the molecule
resulting in adverse by-products, including hydrochloric acid. Also,
compounds, such as styrene, that become reactive during the high temperature
steam regeneration of an activated carbon system will be recoverable with a

membrane.

In summary, at the current time, the use of membrane systems for recovery
at low concentrations will be expensive in comparison to activated carbon or
even incineration. Improvements in the future could change this situation.

In particular, improvements in better polymeric membranes at low costs and use

of compressor systems over vacuum ring pumps might be required.
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PARADOX RETATIONAL DATABASE
To simplify the data reduction of the raw experimental data, a rela-
tional database was chosen to manipulate the data. Table A-1 presents a

listing of the laboratory notebook data which was entered into PARADOX.

Sample Calculations

Examples of the calculations performed to convert the raw data into

usable results is shown in Figure A-1.
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